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Abstract. The global and multi-scale features of the solar wind-magnetosphere coupling
during substorms are modeled using time series data. We introduce a new data-derived
model STADY which combines a nonlinear dynamical approach with elements of
statistical physics. This combined approach can be used to forecast the global or averaged
features of substorms and the range of values with associated probabilities.

1. Introduction

The magnetospheric dynamics during substorms
exhibits both global and multi-scale features. The
global or coherent behavior of the magnetosphere
is evident in a variety of large-scale processes
such as plasmoid formation and ejection, field
line dipolarization, global current systems, etc. At
the same time a number of small-scale
phenomena observed during substorms, like
MHD turbulence, bursty bulk flows, current
disruption, etc. are multi-scale in nature; viz. they
have broad band power spectra in a wide range of
perturbation scales. Such a diversity in dynamical
properties seriously complicates the building a
unified  framework  for  modeling  the
magnetospheric dynamics during substorms.

The early data-derived models of magnetospheric
substorms were inspired by the concepts of
dynamical chaos. They were based on the
assumption that the observed complexity of the
magnetospheric dynamics is attributed to the
nonlinear coupling of just a few main degrees of
freedom [e.g. Sharma, 1995; Klimas et al., 1996].
This approach led to a considerable progress in
development of space weather forecasting tools
based on local-linear filters and neural networks
[Prichard et al., 1994; Vassiliadis et al., 1995;

Horton and Doxas, 1996; Gleisner and Lundstedst,
1997].

However many studies have shown that not all
aspects of magnetospheric dynamics during
substorms conform to the hypothesis of low
dimensionality and thus cannot be accounted
within the framework of dynamical chaos. For
example, the power spectrum of AE index data
[Tsurutani et al., 1990] and magnetic field
fluctuations in the tail current sheet [Ohtani et al.,
1995] have a power law form typical for high
dimensional colored noise. Moreover, detailed
analyses [Takalo et al., 1993, 1994] have shown
that the qualitative properties of the AE time
series are much more similar to bicolored noise
than to low-dimensional chaotic systems.

One of the models used to explain the multi-scale
properties of the magnetospheric dynamics is self-
organized criticality (SOC) [Bak et al., 1987]. A
system in SOC is modeled by a sand-pile or other
non-equilibrium cellular automata which evolve
to a steady-state critical point due to the fine
tuning of the control parameters [Vespignani and
Zapperi, 1998]. In the vicinity of a critical point
the energy transport in the system is carried out
by avalanches whose sizes are distributed
according to a power law. This feature of SOC



has been exploited to account for the power law
spectra observed in the magnetosphere during
substorms [e.g. Consolini, 1997; Chapman et al.,
1998; Takalo et al., 1999; Klimas et al., 2000].
However, the fine tuning of parameters required
to approach the criticality corresponds to the
vanishing values of the input parameter
[Vespignani and Zapperi, 1998]. This makes the
system effectively autonomous and thus questions
the validity of SOC to the magnetosphere, whose
dynamics is to a large extent driven by the solar
wind input. Moreover, SOC models generally
cannot account for the large-scale coherent
features of the magnetosphere since in most SOC
models the multi-scale properties of the system
are essentially independent of the global
dynamics. The only exception to this was
observed in a sand-pile model [Chapman et al.,
1998] in which scale-invariant avalanches were
found to coexist with system-wide large-scale
events.

Our goal is to reconcile the global and multi-scale
features of solar wind-magnetosphere coupling
during substorms. For this purpose we combine
nonlinear dynamical approach with elements of
statistical physics. The methods of nonlinear
dynamics are used to reconstruct the phase space
of the system and to forecast the global
constituent of the magnetospheric dynamics using
local-linear filters (LLF). However, it has been
shown recently that LLF models leave out a
significant portion of the time-series and these
features correspond to the multi-scale component
of the dynamics [Ukhorskiy et al., 2002a]. This
multi-scale constituent of the magnetospheric
dynamics is high dimensional, similar to the
colored noise, and does not allow deterministic
predictions, thus imposing limitations on the
predicting ability of the dynamical models.

The magnetospheric dynamics during substorms
shares a number of properties with non-
equilibrium phase transitions [Sitnov et al., 2000;
Sitnov et al., 2002]. In particular, using global
singular spectrum analysis of VBs-AL data Sitnov
et al. [2000] have shown that the global
magnetospheric dynamics is organized in a
manner similar to the “pressure-temperature-
density” diagram of the water-steam system. They
also established the relation between the

magnitude of the largest fluctuations of AL time
derivative and the solar wind parameters similar
to the B input-output critical exponent [Sitnov et
al., 2001]. The subsequent analyses [Ukhorskiy et
al., 2002a] have shown that LLF dynamical
models are very similar to the mean-field
approach in phase transitions since its output is
obtained by an averaging over a chosen range of
scales in the reconstructed input-output phase
space. Thus, the multi-scale features of the time
series not captured by LLFs are essentially the
deviations of the data from the mean-field model.
According to the phase transition analogy the
magnitudes of these fluctuations should be related
to the solar wind input in a probabilistic fashion
similar to the input-output critical exponent. In
this paper we demonstrate that such a relation can
be established in terms of conditional probability
and this result can be used to improve current
forecasting tools. In the following we present the
first results obtained with use of a new model
STADY that combines the STAtistical and
DYnamical features of the magnetosphere. The
model output consists of a dynamical prediction
from a low-dimensional model and an estimate of
its deviations from the data, computed from the
conditional probability of the events.

2. Solar Wind — Magnetosphere Data Base

The data-derived model STADY is built using the
correlated database of solar wind and
geomagnetic time series compiled by Bargatze et
al. [1985], which consists of solar wind data from
IMP 8 spacecraft and the corresponding values of
the auroral indices with 2.5 min resolution. The
database consists of 34 isolated intervals, and
contain 42,216 points total. Each interval
represents isolated auroral activity preceded and
followed by at least two-hour-long quite periods
(VB = 0, AL<50 nT), and are arranged in the
order of increasing geomagnetic activity. The
solar wind convective electric field VBg is taken
as the input in the model. The magnetospheric
response to the solar wind activity is represented
by the AL index and is the output of the model.
To facilitate the use of VBg and AL data in a joint
input-output phase space, the data sets are
normalized by their respective standard
deviations.



3. Dynamical Model

The main concept underlying the dynamical
approach is the time-delay embedding technique
which was initially developed for autonomous
chaotic systems [see review: Abarbanel et al.,
1993]. It is assumed that a scalar time series data
of an observable quantity is a function only of the
state of the underlying system and contain all the
information necessary to determine its dynamics.
Thus, if a space large enough to unfold the
dynamical attractor is reconstructed from the time
series and the present state of the system is
identified, then the information about the future
can be inferred from the known evolution of
similar states.

For driven dynamical systems the states of the
system in the reconstructed phase space are given
by the input-output delay vectors:
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where I(tn) = In and O(tn) = Oy are the input and
the output time series, and M is the total number
of delays. A proper reconstruction requires a time
delay that is long enough to unfold the underlying
dynamics and short enough so that relevant
features are not lost. Once such a reconstruction is
achieved, the value of the output at the next time
step is related to the current state of the system by
some nonlinear map F:
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The linear expansion of F gives the well known
expression for the local-liner ARMA filters:

M-1 M-1

0..= Zai I+ Zﬁl 0, 3)

i=—1 j=Tprd / dt
The filter coefficients @ and f; are calculated
using the known data, which is referred to as the
training set. The training set is searched for the
states similar to the current, that is the states that
are closest to it, as measured by the distance in the
embedding space defined using the Euclidean
metrics. These states are referred to as the nearest
neighbors.

To model the solar wind-magnetosphere coupling
during substorms we use local-linear filters (LLF)
defined by (3) with I=VBs(t)/oves and
O=AL(t)/oar. An example of 1 hour predictions
of AL for a high activity period (interval 32 of
Bargatze et al. [1985] data set) obtained by this

model is shown in Fig 1. It can be seen from the
figure that LLF reproduces the long-term global
variations in data well and this feature is now
used to forecast the average level of substorm
activity. This component of AL is regular and
low-dimensional by construction. Thus, the
portion of the time series reproduced by LLF
corresponds to the global and coherent features of
the magnetospheric dynamics. However, it is also
evident from the plot that LLF fails to yield the
abrupt variations and peaks. This feature of LLF
is generic to the magnetosphere and does not
depend on the level of substorm activity
[Ukhorskiy et al., 2002a]. Also the inability of
LLF to reproduce the sharp variations in data is
due to the high dimensionality of the multi-scale
constituents of AL time series. The properties of
that part of AL not captured by LLF dynamical
model are very different from the multi-scale
properties of low-dimensional chaotic systems
like Lorenz attractor or Mackey-Glass system, in
which the scale-invariance is reconciled with low
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Figure 1. LLF 1 hour predictions of the high activity
Bargatze 32" interval. The solar wind input data
(VBs) is shown on the upper panel. AL time series
together with the model output (bold line) are shown
on the bottom panel.



dimensionality due to the fractal structure of their
attractors. Both statistical and dynamical
properties of this component of AL are closer to
those of colored noise.

The analyses of the delay embedding of AL-VBg
time series [Ukhorskiy et al., 2002b] have shown
that the averaging over a large number (NN) of
nearest neighbors carried out in the embedding
space smoothes away the small-scale high
dimensional  dynamical constituents.  This
averaging is what yields the more regular low
dimensional component from the time series. The
higher the value of NN the wider is the range of
scales which are smoothed away and the smaller
is the effective dimensionality of the averaged
system. It was also found that a single set of
parameters (M, NN) corresponding to the
reconstruction of the “correct” dynamical system
does not exist. The time delay embedding should
be seen rather as a process of striking a balance
between the level of “noise” (the range of scales
over which the averaging is performed) and the
complexity (the effective dimensionality of the
averaged system) in a “noisy” dynamical system.
Similar conclusions were reached by Stark [2001]
from the theoretical analysis of time delay
embedding in stochastic dynamical systems.

The averaging that stabilizes the filter output and
helps in extracting the coherent component from
AL data is also the cause of information loss,
leading to significant limitations on our ability to
predict by using the dynamical approach. In
particular, due to the averaging the sharpest peaks
in data always come out strongly smoothed, and
the actual magnitudes of substorms are not
predicted. Thus, to improve the accuracy of the
data-derived forecasting tools a new approach
beyond the dynamical modeling is required.

4. Probabilistic Approach

The dynamical model output is constructed by
taking phase space averages of a number of states
similar to the current state of the system, viz. the
nearest neighbors. The reconstructed phase space
is divided into clusters and this yields the
probability measure of the events constituting that
cluster. The size of the cluster is defined by the
radius of a sphere containing the set of nearest

neighbors. To obtain the model output the average
is taken only over the states within a given cluster
while the states outside this cluster are considered
to be independent and therefore do not contribute
to the output. Thus, the LLF is similar to the
mean-field approach in thermodynamics, and this
recognition can be used to build a link between
the two components based on dynamics and
statistical physics. The output of the dynamical
model corresponds to the trajectories in a
truncated reconstructed phase space that lie on a
low-dimensional surface defined in the mean-field
sense. The differences between the model output
and the real AL data correspond to the deviations
of real trajectories from this mean-field surface
due to the high dimensionality of the multi-scale
portion of AL and due to the dynamic nature of
substorms. In the SOC approach these
fluctuations are considered autonomous and thus
should not depend on the solar wind input. On the
other hand, in the models based on phase
transition there should be a statistical relationship
between the multi-scale fluctuations and the solar
wind features. Such a relationship was obtained
and an input-output critical exponent computed
from the Bargatze et al. [1985] data set by Sitnov
et al. [2001]. In this case the probability
distribution of substorms is a function of solar
wind parameters and should be defined in terms
of a conditional probability P(ALIsolar wind).
The output of the dynamical model (ALgpma) iS to
a large extent defined by the solar wind
parameters as

ALy, = [VB,&-0)-fXe+ [ALt-0)-geide (9
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where T is the prediction time scale. Therefore
ALArma can be used as a measure of the solar
wind input, and the conditional probability of AL
fluctuations can be calculated in the form of
P(ALIALagrma). As will be shown later the
advantage of this particular form of the
distribution function is that it can be used directly
to improve the forecasting of AL. The probability
distribution function P(AL, ALarma) is shown on
Fig 2. The straight line AL=ALxrma corresponds
to the mean-field surface, i.e. the output of
dynamical model. The distribution of AL about a
given value of ALarma sets the conditional
probability PLAALIALarma). As can be seen from
the plot there is a clear dependence of



PAALIALsAgma) on Alaryva this quantifies the
relation between the solar wind input and the
fluctuations of AL about the mean-field surface.

log,, (—AL)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

P(AL,AL,p,,,)x10?
0.0 0.09 0.16 0.23 0.31

Figure 2. P(AL, ALsrma) probability distribution
function calculated using Bargatze database.

5. STADY

With the set of P(ALIALsrma) calculated using
the training set we can now proceed with the
construction of the new model STADY which
combines the dynamical model (DY) with
statistical approach (STA). To predict the value of
AL at the (n+1) time step we first calculate
ALArMA(th+1) using the dynamical model (3) and
the known history of AL for t<(t,.;-Tpq) and VBg
for t<t,,;. As discussed above ALarma(tn+1) should
be considered as an estimate of only the average
level of the substorm activity since the dynamical
model often underestimates the AL peaks. This is
where the statistical part of the model comes to
the play. Knowing ALsgrma(tn+1) We can estimate
the magnitude of AL deviation from the output of
the deterministic model with use of  the
distribution function P(ALIALagrmA(tn.1)). This
function not only specifies the largest possible
value of AL for a given ALArma, but also ranks it
in terms of the probability. An example of AL
predictions with use of STADY is shown in Fig 3
for the data interval shown in Fig 1. As can be

seen from the plot STADY yields not only the
long term deterministic predictions of the global
features of the time series but also yields
estimates of the high dimensional multi-scale
component of AL in a probabilistic fashion. Thus,
for given solar wind conditions STADY can
forecast the magnitudes of the substorms and their
their associated probabilities, and thus can be
used as a practical forecasting tool.
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Figure 3. STADY predictions of the high activity
Bargatze 32" interval. The solar wind input data
(VBs) is shown on the upper panel. AL time series
are shown on the bottom panel. The dynamical
model output is indicated by the bold line. Color bars
show the probability of the largest deviations
(AL>900 nT) of real data from the dynamical model
output calculated using P(ALI ALsgma)-

6. Conclusions

A new approach for data-derived modeling of the
solar  wind-magnetosphere coupling during
substorms is introduced. This model, STADY,
combines the nonlinear dynamical approach with
elements of statistical physics, leading to a



reconciliation of the global and multi-scale
aspects of the magnetosphere during substorms.
The dynamical part of the model leads to the
deterministic predictions of the globally coherent
components of the time series, while the statistical
part yields probabilistic predictions of the multi-
scale constituents. The combined STADY
approach leads to a significant improvement in
the space weather forecasting tools since it yields
not only the deterministic predictions of the
average level of the magnetospheric activity but
also the probabilities of the range of geomagnetic
activity for given solar wind conditions.
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